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1 Introduction

Through the understanding of D-branes and string duality (see, for example, the text book

by Polchinski [1]), a more fundamental underling theory called M-theory has been expected

and each string theory is realized as various limits in M-theory. Although this M-theory

is expected, we have only poor understanding. Its low energy effective theory is given by

the eleven dimensional supergravity and it would be a theory of membrane compared from

a string theory which is a theory of string. The strong string coupling limit of IIA string

theory opens up the eleventh space and is described by M-theory. It is conjectured that

M-theory in an infinite momentum frame is described by BFSS matrix model [2].

The quantization of a membrane worldvolume theory is very challenging and one of

difficulty is the nonlocality associated with the deformation of membrane without changing

its volume (see, for example, a review by Taylor [3]). In string theory, the open string

and closed string duality appears in many situations and has provided many powerful

techniques. One important idea behind BFSS matrix model is also based on the open-

closed string duality and the worldvolume theory of multiple D0-brane, (which is governed

by open string fluctuations) describes the target space dynamics, i.e. the gravity in the

target space (which is governed by closed string fluctuations). Therefore another direction

to approach to M-theory is studying the effective action for multiple Membrane.

Recently Bagger and Lambert (BL) constructed a new three dimensional N=8 super-

conformal theory using a three algebra [4] (see also [5] by Gustavsson). Since BL theory

satisfies all the properties which multiple membrane should have, it is expected to describe

multiple membranes. For BL theory with SO(4) gauge symmetry, the moduli space [6–8] is

discussed and the theory is conjectured to describe a two membrane system in an orbifold
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space [7, 8]. Soon after the work by Bagger-Lambert, Aharony, Bergman, Jafferis and Mal-

dacena (ABJM) generalized their idea and constructed three dimensional N=6 superconfor-

mal theories which contain BL theory as a special case [9]. ABJM also show the membrane

configuration in the eleven dimensional orbifold space time (R1,2×(R8/Zk) and k is the level

of Chern-Simons coupling) for their N=6 theory with U(N)×U(N) gauge symmetry. Since

the matter fields are charged under U(1) in U(N) = U(1)×SU(N) and then U(1) is not de-

coupled from SU(N) in ABJM theory, BL theory with SO(4) = SU(2)×SU(2) may not de-

scribe a multiple membrane system. However U(1) gauge coupling is IR free and the BL the-

ory and ABJM theory with U(2)×U(2) gauge symmetry may be connected by a renormal-

ization flow. The target space superalgebra is studied in BL theory with the central element

which suggests the target space is an eleven dimensional space [10]. It is also discussed that

BL theory with the Nambu-Poisson algebra turns out be an action of single M5-brane [11].

Therefore we may still expect that BL theory describes multiple membranes. If so, it worths

studying a possibility that multiple membrane dynamics can describe a target space dy-

namics, as parallel to that the D-brane dynamics describes the target space dynamics.

One important consequence of open-closed string duality is probing the target space

from D-brane scattering using D-brane effective theory, i.e. Super Yang-Mills theory

(SYM) [12] where the one loop effective potential reproduces the Newton potential in

the target space.1 We then expect a similar correspondence in M-theory, and in this note

we study the one loop effective potential around a relatively moving membrane background

in BL theory and see if the potential is understood as the Newton potential in the target

space. Since the target space is discussed to be an orbifold R1,2 × (R8/Zk), we are inter-

ested in a small k case in order to probe the whole spacetime otherwise the one spacial

direction is effectively compactified in a large k case (Zk is a subgroup of a U(1) and we

can always define one spacial direction generated by this U(1) for any value of k. We call

this direction the compactified direction.). However the coupling constant is proportional

to 1/k, the theory is strongly coupled for a small k and the perturbation will not be a good

expansion. Despite of that we still expect the one loop effective potential qualitatively

gives a correct answer, since we expect that an one loop open membrane amplitude can

be reinterpreted as a tree closed membrane amplitude, and also we treat a small deviation

from BPS state. This situation is similar to BFSS matrix model. One should take a large N

limit (N is the size of matrix) to recover the eleven dimensional Lorentz invariance, and the

matrix model should give a controllable description at a shorter distance than the Plank

length [12] at which we may expect the spacetime no longer looks like a eleven (or ten)

dimensional classical spacetime. Despite of these, even for a finite N, the one loop effective

potential reproduces the Newton potential.

With this expectation in mind, we study the membrane scattering and compute the

one loop effective potential in BL theory. The membrane scattering in ABJM theory is

mentioned in [14] and that in Lorentzian BL theory is discussed in [15]. We generally

expect to obtain the Newton potential between multiple membranes in eleven dimensional

spacetime. This is because BL theory is a three dimensional N=8 superconformal theory

in which scale and SO(8) symmetry are included as a global symmetry [16]. On the other

1D-brane scattering problem with string 1-loop amplitude was studied in [13].
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hand, BL theory is related with D2-branes effective theory [17]. Then we expect the Newton

potential is the one in ten dimensions. Here is a question to clarify; which kind of behavior

will be derived from BL theory. This is one motivation why we compute the one loop

effective potential in BL theory in this paper.

From our calculations, we find that the potential is understood as the Newton potential

and the total dimension of target space, which is read from the exponent of the power law

behavior, is ten rather than eleven. We show the coefficient in front of the term which

is allowed from the dimensional analysis and is understood as eleven dimensional Newton

potential is zero. This result suggests that the open membrane, described as a perturbation

from the background, always wraps the compactified direction, and the BL theory can probe

only remaining ten dimensions within the perturbation.

Using BFSS matrix model, the membrane scattering has been discussed in [18]. Their

results are exactly same as those expected from type IIA theory2 and then the non compact

space time in the target space has ten dimensions. Polchinski and Pouliot discussed the

membrane scattering with momentum transfer along the eleventh direction (M-momentum

transfer) corresponds to an instanton process [19]. We have an observation that the same

can happen in BL theory.

In the next section, we review the moduli space of BL theory and introduce the

general form of small velocity which corresponds to motion of membranes. In section 3,

we compute the one loop effective potential around backgrounds with several velocities

and discuss what BL theory can probe about the target space. In section 4, we summarize

and conclude.

During the preparation of present paper, we received the paper [23]. The authors

calculate 1-loop effective potential of ABJM theory and see an agreement with the Newton

potential on AdS4 × S7/Zk.

2 Moduli space and position of membranes

In this note, we treat BL theory with SO(4) gauge symmetry. The moduli space of this

theory has been studied in [7, 8] at which the scalar potential vanishes. The Lagrangian is

L = −1

2
DµXA,IDµXA,I +

i

2
Ψ

A
ΓµDµΨA +

ig

4
fABCDΨ

B
ΓIJXC,IXD,JΨA

−g2

12

[

fABCDXA,IXB,JXC,K
] [

f D
EFG XE,IXF,JXG,K

]

+
g

2
ǫµνλ

[

fABCDAAB
µ ∂νA

CD
λ +

2g

3
f G

AEF fBCDGAAB
µ ACD

ν AEF
λ

]

,

DµXA,I = ∂µXA,I + gÃA
µBXB,I , ÃA

µB ≡ fA
BCDACD

µ , (2.1)

where fABCD is the structure constant for the three algebra and fABCD = ǫABCD, (A =

1, · · · , 4 etc), for A4 algebra which is equivalent with SO(4) gauge symmetry. The indices

2Perturbavive study based on the loop calculation using D2 brane effective action, i.e. three dimensional

SYM, can be done similar to [12].
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I, J,K(= 1, · · · , 8) are those of SO(8) global symmetry and the spacetime signature is

(−,+,+). This Lagrangian has N = 8 superconformal symmetry and supersymmetry

requires the coupling constants are same and the value of coupling constant g = 2π/k is

quantized (k ∈ Z), because of Chern-Simons term.

After a suitable gauge transformation, the vacuum configuration (with the gauge fields

and fermions are zero) is

〈XA,I〉 =











0

0

rI
1

rI
2











,
A = 1, · · · , 4,

I = 1, · · · , 8,
(2.2)

where rI
1 and rI

2 are real values, and the index A = 1, · · · , 4 is the index for the three

algebra. There are two sets of eight values rI
1 and rI

2, and then rI
1 and rI

2 are related with

the position of two membranes in the eight dimensional transverse directions in the target

space. The moduli space should be divided by the gauge symmetry. The discrete symmetry

O(2, Z) ∈ SO(4) act on two vectors like:

(

−1 0

0 1

)

: rI
1 → −rI

1, rI
2 → rI

2, (2.3)

(

1 0

0 −1

)

: rI
1 → rI

1 , rI
2 → −rI

2, (2.4)

(

0 1

1 0

)

: rI
1 → rI

2 , rI
2 → rI

1, (2.5)

and the moduli space becomes ((R8/Z2) × (R8/Z2))/Z2. The moduli space should be

further divided by the continuous gauge symmetry. Since the gauge fields have the Chern-

Simons coupling, the continuous symmetry which keeps the Chern-Simons term invariant

and ÃA,B
µ = 0 is Zk ∈ U(1):

zI → eiθzI , θ =
πn

k
, n ∈ Z, (2.6)

where zI = rI
1 + irI

2 . Then the moduli space is (R8 × R8)/D2k where D2k is a dihedral

group and for k = 1 it is just (R8 × R8)/(Z2 × Z2) and the target space is expected to

R1,2×(R8/Z2). This Zk is a subgroup of U(1), and this U(1) generate one spacial direction

and we call this direction the compactified direction even for a finite k. In the large k limit,

this direction is identified and the BL theory reduces to the weakly coupled IIA theory [8].

Using SO(8) global symmetry, the form of 〈XA,I〉 can be written

〈XA,I〉 =











0 · · · 0 0 0

0 · · · 0 0 0

0 · · · 0 b0 0

0 · · · 0 0 a0











, (2.7)
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X7

X8

(b0, 0)

(0, a0)

Figure 1. The positions of two membranes in XI coordinate, (b0, 0) and (0, a0). The ellipse is the

compactified direction generated by the U(1) subgroup. The aria of the ellipse (the shaded region)

is πa0b0.

and the position of membranes in XI coordinates and the compactified direction are plotted

in figure 1.

When a0 6= 0 and b0 = 0, one can integrate out massive gauge fields and obtain SU(2)

(plus free U(1)) SYM theory, i.e. D2-brane action, at the leading order in 1/a0 [17]. If b0

then turns on, SU(2) gauge symmetry is broken down to U(1) and the masses of massive

gauge bosons are given ga0b0. Therefore ga0b0 = gYML where gYM is the gauge coupling

of SYM and L is the distance between two branes. Since only the product gYML appears

in the Lagrangian, there is an ambiguity for gYM (and L). We know there is a symmetry

under the exchange of a0 and b0, and in g → 0, (k → ∞) limit the theory reduces to the

D2-brane system, and thus we choose gYM = g and L = a0b0 in this note.3

Since we would like to discuss the scattering of membranes, we introduce the small

time dependence into XA,I . Solving the equations of motion for ÃAB
µ and XA,I under

ÃA,B
µ = 0, we obtain

〈XA,I〉 =











0 · · · 0 0 0

0 · · · 0 0 0

v1t · · · v6t b0 + v7t v8t

u1t · · · u6t u7t a0 + u8t











, (2.8)

and except that v8 = (b0u7)/a0, all the v and u are free. We note that the constraint

v8 = (b0u7)/a0 comes from the equation of motion for Ã3,4
µ which is the gauge field

corresponds to the continuous symmetry (2.6) and means that the momentum along the

3One can adjust the dimensions by introducing a dimensionful parameter, Mp, so that gYM = gM
1/2

p

and L = a0b0/M
2

p .
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compactified direction is set to be zero. This may be the similar situation to that one

light-cone direction is compactified and the momentum along that direction is set to be

constant in BFSS matrix model.

3 Membranes scattering and gravitational potential

In the previous section, we review the moduli space and the general form of velocity which

satisfies the equation of motion. In this section we study the one loop effective potential

around the background with non-zero velocities.4 In string theory, D-brane scattering

has been discussed using SYM theory and the one loop effective potential reproduces the

Newton potential in the target space. Thus we expect we can probe the target space from

the one loop potential which we will compute in this section.

From the relation which comes from the gauge field Ã3,4
µ , one spacial direction is

special and there is no momentum transfer along the direction. Although we expect

that the target space is eleven dimensions, this observation implies we can only probe

ten dimensions, not eleven dimensions. On the other hand, the action has SO(8) global

symmetry and (supersymmetric) conformal symmetry and we may expect we can probe

eleven dimension according to the discussion by [16]. Thus we compute the gravitational

potential by applying the idea of computing the gravitational potential from SYM theory,

to clarify which observation is correct.

Before going to the calculation, we notice that the regularization in Chern-Simons

theory is not simple. A dimensional regularization naively breaks the gauge invariance due

to the difficulty of analytic continuation of ǫµνρ. Another regularization is adding Yang-

Mills term and a careful study on the regularization methods has been done in [20]. The one

loop corrections in BL theory have been discussed with these regularization procedure [21].

In our calculation of one loop graphs, a dimensional regularization can be adapted.

3.1 For v7 6= 0 and u8 6= 0

We first study the case where only v7 and u8 are non-zero. In order to study the one loop

effective potential, we just have to keep quadratic terms in the Lagrangian around the

background. Then the relevant terms in the Lagrangian becomes L = L1 + L2 + Lf ,

L1 =
∑

α=1,2

gǫµνρÃα
µ∂νB̃α

ρ − 1

2

[

∂µX2,7 + gbÃ1
µ

]2
− (∂tb)gÃ1

t X
2,7 − 1

2

[

∂µX1,8 + gaB̃1
µ

]2

−(∂ta)gB̃1
t X1,8 − 1

2

[

∂µX1,7 − gbÃ2
µ

]2
+ (∂tb)gÃ2

t X
1,7 − 1

2

[

∂µX2,8 + gaB̃2
µ

]2

−(∂ta)gB̃2
t X2,8,

L2 = gǫµνρÃ3
µ∂νB̃3

ρ − 1

2

[

∂µX3,7
]2 − 1

2

[

∂µX3,8 + gaB̃3
µ

]2
− (∂ta)gB̃3

t X3,8

−1

2

[

∂µX4,7 − gbB̃3
µ

]2
+ (∂tb)gB̃3

t X4,7 − 1

2

[

∂µX4,8
]2

,

4As in string theory, we expect that one loop potential may be trustful if the deviation from supersym-

metry can be controlled to be small, i.e. the velocities are kept much smaller than the distance between

the branes.
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Figure 2. The arrows denote the direction of velocity.

Lf =
1

2
XA,I(� − g2a2b2)XA,I +

1

2
XA′,I

�XA′,I + Ψ
A′′

Γµ∂µΨA′′

+
i

2
gab

[

Ψ
2
Γ78Ψ1 − Ψ

1
Γ78Ψ2

]

,

(A = 1, 2, A′ = 3, 4, A′′ = 1, · · · , 4, I = 1, · · · , 6)

where a ≡ a0 + u8t and b ≡ b0 + v7t, and we have used the following notation

Ãα
µ ≡ 1

2
ǫαβγÃµβγ , B̃α

µ ≡ Ãα4
µ , (α = 1, · · · , 3, etc). (3.1)

In this case the direction of velocity is normal to the compactified direction (figure 2).

We integrate out Ã3
µ which gives that B̃3

µ is written by a derivative of scalar field, i.e.

B̃3
µ = ∂µB. Substitute this expression into L2, we obtain

L2 =−1

2

[

∂µX3,7
]2− 1

2

[

∂µX3,8+g(∂µaB)
]2− 1

2

[

∂µX4,7−g(∂µbB)
]2− 1

2

[

∂µX4,8
]2

, (3.2)

after by using a partial integral. Thus we have four massless scalar fields and the contri-

bution to the one loop effective action from this part becomes

V 1 loop
2 (a0, b0;u8, v7) =

∫

d3x 4 × 1

2
ln det�. (3.3)

We can also easily compute the contribution from Lf which are twelve massive scalars

with the mass gab, sixteen massless fermion and eight massive fermions with the mass2

g2a2b2 ± g∂t(ab). Then we obtain

V 1 loop
f (a0, b0;u8, v7) =

∫

d3x12× 1

2
ln det(� − g2a2b2) + 12× 1

2
ln det � − 16× 1

2
ln det�

−8× 1

2

[

ln det(�−g2a2b2+g(∂tab))+ln det(�−g2a2b2−g(∂tab))
]

.

(3.4)
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Now we study L1. We similarly integrate out B̃a
µ using the equation of motion and we ob-

tain,

L1 = − 1

4a2

[

∂µÃ1
ν − ∂νÃ1

µ

]2
− 1

2

[

∂µX2,7 + gbÃ1
t

]2
+ (∂tb)gÃ1

t X
2,7

− 1

4a2

[

∂µÃ2
ν − ∂νÃ2

µ

]2
− 1

2

[

∂µX1,7 − gbÃ2

]2
− (∂tb)gÃtX

1,7. (3.5)

The Lagrangian L1 is exactly same as the quadratic part of two D2-brane action with

the time dependent gauge coupling a. Thus we immediately see that if u8 = 0, the one

loop effective potential is exactly same as that of two D2-brane scattering with the gauge

coupling a0 and the distance between two D2 brane in X7 direction is gb. Then in this

case, we have

V 1 loop
1 (a0, b0;u8 = 0, v7) =

∫

d3x 2 × 1

2

[

ln det(� − g2a2b2 + (2g∂tab))

+ ln det(� − g2a2b2 − (2g∂tab))
]

, (3.6)

and in total the one loop effective potential by expanding v7t ≪ b0 is

V 1 loop(a0, b0;u8 = 0, v7) =

∫

d3p

(2π)3
2(ga0∂tb)

4

(p2 + g2a2
0b

2)4
+ O((v7t)

6). (3.7)

We notice that the terms with the second order in v7 cancel out. It gives the following

potential at the leading order

V 1 loop(a0, b0;u8 = 0, v7) = cYM
(a0∂tb)

4

ga5
0b

5
0

= cYM
(∂tL)4

gYML5
, (3.8)

where cYM is the numerical coefficient computed from D2-brane scattering using SYM

theory, and gYM = g and L = a0b from the matching with D2-brane action in the g → 0

limit. Since there is a discrete symmetry which exchange a and b, the one loop effective

potential of the case v7 = 0 is same as that of two D2-brane scattering with the gauge

coupling b0 and the distance a. Then in this case we have a same form

V 1 loop(a0, b0;u8, v7 = 0) =

∫

d3p

(2π)3
(g∂tab0)

4

(p2 + g2a2b2
0)

4
∼ cYM

(∂tab0)
4

ga5
0b

5
0

= cYM
(∂tL)4

gYML5
, (3.9)

where gYM = g and L = ab0.

For both v7 and u8 are non-zero, the calculation is involved and we introduce a proper

gauge fixing term and compute the one loop effective potential. In order that the compu-

tation becomes simple, first we rescale Ãα=1,2
µ = aAα=1,2

µ to have canonical kinetic terms
1
2Aα[� − (gab)2]Aα. Next, we introduce the following gauge fixing

Lgf = −1

2

[

∂µA1
µ + gabX2,7 − ∂µa

a
A1

µ

]2

− 1

2

[

∂µA2
µ − gabX1,7 − ∂µa

a2
A2

µ

]2

. (3.10)

The ghost Lagrangian may be suggested from Lgf as

Lgh =
∑

α=1,2

˜̄cαa

[

∂µ 1

a
∂µ − g2ab2 − ∂µa

a2
∂µ

]

c̃α, (3.11)

– 8 –
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which follows from the gauge symmetry of L1:

δA1
µ =

1

a
∂µΛ1, δX2,7 = −gbΛ1,

δA2
µ =

1

a
∂µΛ2, δX2,8 = gbΛ2. (3.12)

However, note that these ghost may allow a background dependent field rescaling c̃ →
f(a, b)c̃ and ˜̄c → f(a, b)−1˜̄c with some function f(a, b). The normalization is fixed such

that the ghost Lagrangian has the supersymmetry after adding superpartners appropriately.

In stead of fixing the normalization from supersymmetry, we can determine the correct

normalization from the requirement that the total Lagrangian has the discrete symmetry

under the exchange (2.3)–(2.5). It is simply achieved by the ghost redefinition c̃ = ac and
˜̄c = a−1c̄ in (3.11), then we claim that correct ghost Lagrangian is

Lgh =
∑

α=1,2

c̄α

[

� − g2a2b2 − 2
∂µa∂µa

a2

]

cα. (3.13)

Then L1 + Lgf + Lgh becomes

L1 + Lgf + Lgh =
∑

α=1,2

1

2
Xα,7(� − g2a2b2)Xα,7 + 2g∂µ(ab)Ã1

µX2,7 − 2g∂µ(ab)Ã2
µX1,7

+
∑

α=1,2

[

1

2
Ãα µ(� − g2a2b2)Ãα

µ +
1

2

∂µa∂νa

a2
Ãα

µÃα
ν − ∂µa∂µa

a2
Ãα µÃα

µ

]

+
∑

α=1,2

c̄α

[

� − g2a2b2 − 2
∂µa∂µa

a2

]

cα. (3.14)

We compute the one loop effective action as a perturbation with v = ∂t(ab) and ∂ta. The

terms proportional to (∂ta)2 and (∂ta)4 cancel out between the gauge fields and ghosts, and

because of this the ghost action (3.13) is consistent with the discrete symmetry (2.3)–(2.5).

We can see the second order in terms of velocity v = ∂t(ab) cancels out as expected from

supersymmetry. This is because the boson loop contribution from L1 + Lgf + Lgh + Lf is

∫

d3p

(2π)3
4g2[∂(ab)]2

(p2 + g2a2b2)2
(3.15)

and it is canceled by the fermion loop contribution from Lf . We can also easily see that

the third order of v vanishes and the potential starts from the fourth order in v,

V 1 loop(a0, b0;u8, v7) ∼ cYM
[(ub0 + a0v)]4

ga5
0b

5
0

= cYM
(∂tL)4

gYML5
. (3.16)

In summary, we obtain that the form of one loop effective potential is given by

(∂tL)4/L5 and the exponent 5 for L is consistent with the gravitational potential in ten

dimensional space.

From the above result that there are no terms proportionals to 1/a6 or 1/b6 in the

potential, when a0 6= 0 and b0 = 0 the potential vanishes at the one loop,

V 1 loop(a0, b0 = 0;u8, v7 = 0) = 0. (3.17)
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Since Bagger-Lambert theory is a superconformal theory, the canonical dimension of a is

half and the possible form for the potential has the following form

Veff(a0, b0 = 0;u8, v7 = 0) ∝ (∂ta)4

a6
, (3.18)

If the coefficient is not zero, we may claim that a is the distance between two membranes

and the target space is a eleven dimensional space from a similar argument on a scale

invariant SO(8) symmetric theory [16]. But, as (3.17), the coefficient is zero in Bagger-

Lambert theory.

These results suggest that the membrane fluctuations connecting two membranes al-

ways wrap the compactified direction generated by Ã3,4
µ even k is finite, and therefore the

one loop effective potential only probes ten dimensions. Since in the large a0 limit the ac-

tion at the leading terms in 1/a0 is same as the action for D2-branes, this result is natural.

We give some comments in our calculations. The Lagrangian L1 in (3.5) is same as

the quadratic part of D2 brane action with the time dependent gauge coupling a. This

shows Bagger-Lambert theory can treat more general situation where the gauge coupling

is also time dependent. Beyond the one loop level, the quadratic terms are not enough

and we have to look at interactions where it is known that the action is no longer same

as the D2 brane action (with time dependent gauge coupling) [17]. Thus we expect the

effective potential has a different form from the one computed from the D2 brane action

in the two or higher loop level.

3.2 For v8 6= 0 and u7 6= 0

We study the case v8 6= 0 and u7 = a0v8/b0 6= 0. In the previous case, the membranes are

pulled normal to the compactified direction. On the other in the case v8 6= 0 and u7 6= 0,

the direction of velocity is tangent to the compactified direction (figure 3), (but notice that

the momentum along the compactified direction is always zero). We may expect the result

is different from the previous case.

The relevant term of Lagrangian after the redefinition Ãα
µ = a0A

α
µ and B̃α

µ = b0B
α
µ

becomes L = L1 + L2 + Lf ,

L1 =
∑

α=1,2

gLǫµνρAα
µ∂νBα

ρ −
1

2

[

∂µX1,7−gLA2
µ+gV tB1

µ

]2− 1

2

[

∂µX2,7+gLA1
µ+gV tB2

µ

]2

−1

2

[

∂µX1,8 + gLB1
µ − gV tA2

µ

]2 − 1

2

[

∂µX2,8 + gLB2
µ + gV tA1

µ

]2

−V g(B1
t X1,7 + B2

t X2,7) − V g(−A2
t X

1,8 + A1
t X

2,8), (3.19)

L2 = gLǫµνρA3
µ∂νB

3
ρ−V gB3

t X3,7+V gB3
t X4,8− 1

2

[

∂µX3,7+gV tB3
µ

]2− 1

2

[

∂µX4,8−gV tB3
µ

]2

−1

2

[

∂µX4,7 − gLB3
µ

]2 − 1

2

[

∂µX3,8 + gLB3
µ

]2
, (3.20)

Lf =
1

2
XA,I

[

� − g2

(

L − V 2

L
t2
)2
]

XA,I +
1

2
XA′,I

�XA,I +
i

2
Ψ

A′′

Γµ∂µΨA′′

+
i

2
g

(

L − V 2

L
t2
)

(

Ψ
2
Γ78Ψ1 − Ψ

1
Γ78Ψ2

)

,

(A = 1, 2, A′ = 3, 4, A′′ = 1, · · · , 4 I = 1, · · · , 6), (3.21)
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Figure 3. The arrows denote the direction of velocity.

where L = a0b0 and V = a0v8 = b0u7. The background always appears in the combination

L and V and this Lagrangian can not be understood as SYM with time dependent gauge

coupling and/or time dependent Higgs fields after integrating out Bα
µ fields. In this case

the 1-loop effective potential becomes (We discuss on the calculation of the potential

in appendix A.)

V 1 loop(L, V ) =
1

gπ

∫

d3x

[

V 4

4L5
− g2V 4

2L3
t2
]

. (3.22)

In u7 → 0 with fixed V limit it becomes D2-brane like potential. Again it is suggested

that 2-branes feel large ten dimension through this potential.

Before closing this section, we give two comments.

1. Since the physical mass scale is ab − u7v8t
2, we expect that if ab − u7v8t

2 = a0b0 is

kept fixed the effective potential is zero. However ab − u7v8t
2 = a0b0 implies all the

velocities u7,8 and v7,8 are zero.

2. We look again at the equations of motion for the gauge fields B̃α
µ and Ãα

µ (with

fermions are zero) which are

0 = −X4,IDµXα,I + Xα,IDµX4,I +
1

2
ǫµνρ

(

F̃α
νρ − gǫαβγB̃β

ν B̃γ
ρ

)

, (3.23)

0 = ǫαβγXβ,IDµXγ,I + ǫµνρ
(

∂νB̃
α
ρ − gǫαβγÃβ

ν B̃γ
ρ

)

, (3.24)

where F̃α
µν is SU(2) gauge field strength constructed by Ãα

µ. Then the momentum

along the compactified direction is non zero (−X4,IDµX3,I + X3,IDµX4,I 6= 0) when

Ãα
µ has a magnetic monopole configuration (with B̃α

µ = 0). (The monopole instan-

ton configuration in ABJM theory is discussed in [22].) This is consistent with the

membrane scattering from three dimensional SYM with M-momentum discussed by
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Polchinski-Pouliot [19]. Therefore we expect that higher loop contributions do not

change the form of leading potential, ∝ (∂tL)4/L5 and the eleventh direction cannot

be probed perturbatically. The eleventh direction can be probed through a non-

perturbative process.

4 Conclusion and discussions

In this note, we studied membrane scattering from Bagger-Lambert theory and read out

the dimensions of the target space from the one loop effective potential. We understand

the membranes propagating between two membranes always wrap on the one spacial di-

rection which becomes the compactified direction when the level of Chern-Simons coupling

k becomes infinite. This special direction cannot be probed and the membrane can only

probe ten dimensions in perturbation, though the Bagger-Lambert theory has SO(8) and

scale symmetries. As similar to the membrane scattering from SYM theory, the eleventh

direction can be probed through non perturbative effects.
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A Detail of the one loop potential in v8 6= 0, u7 6= 0 case

Here we discuss the effective potential in section 3.2 in some detail. Contributions from

Lf in (3.21) are simple. Contributions from L2 in (3.20) can be written as those of four

massless scalars after integrating out B3
µ, as similar to section 3.1. So let us consider L1

in (3.19) in bellow.

To make the calculation easy first we integrate out Bα
µ in (3.19) and redefine scalar

field as
(

Xα,7

Xα,8

)

=

(

L V t

−V t L

)(

Xα

Y α

)

, α = 1, 2. (A.1)

Then (3.19) becomes

L1 = −1

2
(L2 + V 2t2)(∂µXα)2 + 2

[∂(V t)]2

ξ2
(Xα)2 − g2ξ2

2
(L2 − V 2t2)(Xα)2

− 1

2ξ2
∂µAα

ν ∂µAα ν +

[

∂µξ∂νξ

ξ4
− ∂µ∂νξ

ξ3

]

Aα
µAα

ν − 1

2
g2

[

L2ξ2 − 4V 2t2

ξ2

]

(Aα)2

+
4gV t

ξ2
ǫµ

νρ∂νA1,2
ρ A2,1

µ +
1

2ξ2

[

∂µA1
µ − 2∂µξ

ξ
Aµ + gξ2(L2 − V 2t2)X2

]2

+
1

2ξ2

[

∂µA2
µ − 2∂µξ

ξ
Aµ − gξ2(L2 − V 2t2)X1

]2

+
2∂µ(V t)

ξ2
ǫµνρ∂νA

1,2
ρ X1,2

∓g∂µ(V 2t2)

(

1 +
2

ξ2

)

A1,2
µ X2,1 ± 2g(L2 − V 2t2)

∂µξ

ξ
A1,2

µ X2,1, (A.2)
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where ξ2 = 1 + (V t)2

L2 . In the last line, we introduced a convenient notation: A1,2X1,2 =

A1X1+A2X2, ±A1,2X2,1 = A1X2−A2X1. Note that Y a disappeared from the Lagrangian

due to a Higgs mechanism. Next we introduce a gauge fixing Lagrangian

Lgf =
1

2ξ2

[

∂µA1,2
µ − 2∂µξ

ξ
A1,2

µ ± gξ2(L2 − V 2t2)X2,1

]2

. (A.3)

Then a naive ghost Lagrangian (we will explain later why this Lagrangian is naive) would be

Lgh =
∑

α=1,2

¯̃cα

[

� − 2∂µξ

ξ
∂µ − g2L2

(

1 − V 2t2

L2

)2
]

c̃α. (A.4)

Finally we make kinetic terms of Xα and Aα
µ canonical by a field rescaling, and then the

gauge fixed Lagrangian is

L1 + Lgf + Lgh =

−1

2
(∂µXα)2 − 1

2

[

g2L2

(

1 − V 2t2

L2

)2

+
�ξ

ξ
− 4∂µ(V t)∂µ(V t)

L2

]

(Xα)2

−1

2
(∂µAα

ν )(∂µAα ν)+

(

∂µξ∂νξ

ξ2
− ∂µ∂νξ

ξ

)

Aα
µAα

ν −
1

2

[

g2L2ξ4 − 4g2V 2t2−�ξ

ξ

]

(Aα)2

+¯̃cα

[

� − 2∂µξ

ξ
∂µ − g2L2

(

1 − V 2t2

L2

)2
]

c̃α ± 4gV

ξ2
ǫµνρ∂ν(ξA1,2

ρ )A2,1
µ

+
2∂µ(V t)

Lξ2
ǫµνρ∂ν(ξA

1,2
ρ )X1,2 ∓ 2gL

∂µ(V 2t2)

L

(

1 +
2

ξ2

)

A1,2
µ X2,1

±2g(L2 − V 2t2)
∂µξ

ξL
A1,2

µ X2,1. (A.5)

Then we calculate 1-loop effective potential as a perturbation of V . Now let us calculate

O(V 2) terms of 1-loop potential by using this Lagrangian. Interaction vertices which are

relevant for our calculation are

V = Xα

[

(gV t)2 − 3V 2

2L2

]

Xα + Aα µ

[

(gV t)2 − V 2

2L2

]

Aα
µ +

V 2

L2
Aα

0 Aα
0

+c̄α

[

2(gV t)2 +
2V 2t

L2
∂t

]

cα+2gV ǫijǫA1
i A

2
j−

2V

L
X1,2ǫij∂iA

1,2
j , (i, j = 1, 2) (A.6)

and free field propagators are

〈Xα(x)Xβ(y)〉 = δα,β∆(x, y), 〈Aα
µ(x)Aβ

ν (y)〉 = δα,βηµν∆(x, y), (A.7)

where

∆(x, y) =

∫

d3p

i(2π)3
eip(x−y)

p2 + (gL)2
, (A.8)

which satisfies

(�(x) − g2L2)∆(x, y) = iδ(3)(x − y). (A.9)

– 13 –



J
H
E
P
0
8
(
2
0
0
9
)
0
7
1

A simple calculation shows that O(V 2) terms are

− 4i
V 2

L2

∫

dx3(1 + t∂2)∆(x, x) +
4V 2

L2

∫

dx3

∫

dy3 ∆(x, y)(∂2
xi

− g2L2)∆(x, y). (A.10)

The contributions from fermionic loop cancels by themselves and the total potential is

given by (A.10). This seems to contradict with supersymmetry since V 2 should vanish

because of supersymmetry. This is because the ghost Lagrangian was naive. Namely,

the normalization of ghost fields has not been fixed yet, and one may determine the

normalization so that the result is consistent with supersymmetry. Rescaling ghost fields

as c̃ = fc and ¯̃c = f−1c̄, we have a new derivative interaction

δV = c̄

[

2(∂µf)∂µ

f
+

(�f)

f

]

c, (A.11)

to ghost Lagrangian Lgh. And here we propose to choose

f = 1 ± i
V t

L
, (A.12)

and this interaction terms cancels O(V 2) term (A.10). Calculations of higher order

potential contain UV divergent terms. These divergences are canceled by introducing

higher order terms of f , and then we interpret the remaining finite 1-loop potential of BL

theory as the Newton potential.

Now we calculate O(V 4) 1-loop potential with this f . O(V ) term of the f is sufficient to

our purpose. For simplicity we consider Euclidean theory. Then the gauge fixed Lagrangian

for massive fields with f can be written as

L̃ =
1

2
X̃I

A

(

� − g2m2
0

)

X̃I
A (I = 1, . . . , 6, A = 1, 2)

+
1

2
Ψ̄1,2

(

∂/ − γ78gm0

)

Ψ1,2 +
1

2
Xα

(

� − g2m2
0 + δmX

)

Xα

+
1

2
Aα
(

� − g2m2
0 + δmA

)

Aα + HAα
0 Aα

0 + c̄α
(

� − g2m2
0 + δmg + K∂

)

cα

+JǫijA1
i A

2
j + Fǫij∂iA

1,2
j X1,2 ± GA1,2

0 X2,1. (A.13)

Explicit forms of m0, δm,F,G,H, J are

m2
0 =

(

L − V 2t2

L

)2

, δmX =
4V 2

L2
− ξ̈

ξ
, δmA =

ξ̈

ξ
,

δmg =
f̈

f
− 2ḟ ξ̇

fξ
, 2H = 2

ξ̇2

ξ2
− 2

ξ̈

ξ
,

K∂ = 2

(

ḟ

f
− ξ̇

ξ

)

∂0, F =
2V

Lξ
, G = −4gV 2t

L
, J = −4gV

ξ2
. (A.14)

where f = 1 ± V t
L

in Euclidean theory. We define new fields from Aα
i as

A1
1 =

1√
2
(α2 + β1), A1

2 =
1√
2
(−α1 + β2), A2

1 =
1√
2
(α2 − β1), A2

2 =
1√
2
(α1 + β2),

(A.15)
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and carry out Gaussian integration of X̃I
A, Ψ1,2, Xα, c̄α, cα and Aα

0 . Then we obtain the

following 1-loop effective Lagrangian:

L̃1loop = −6Tr log(−� + m2
0) + 4Tr log(−� + m2

0 − δmf ) + 4Tr log(−� + m2
0 + δmf )

−Tr log(−�X) + 2Tr log(−�g) − Tr log(−�A0
)

+
1

2
αi(� − m2

0 + δmA + J)αi +
1

2
βi(� − m2

0 + δmA − J)βi

−1

4
(∇ · α−∇×β)F

1

�X
F (∇ · α−∇×β)− 1

4
(∇ · β−∇×α)F

1

�X
F (∇ · β−∇×α)

+
1

16
(∇ · α −∇× β)F

1

�X
G

1

�A0

G
1

�X
F (∇ · α −∇× β)

+
1

16
(∇ · β −∇× α)F

1

�X
G

1

�A0

G
1

�X
F (∇ · β −∇× α), (A.16)

where the symbol � is Laplacian and

δmf = ∂m0 = −2V 2t

L
,

�X = � − m2
0 + δmX ,

�g = � − m2
0 + δmg + K∂t,

�A0
= � − m2

0 + δmA + 2H + G
1

∆X
G. (A.17)

We also introduce the notations ∇ · α = ∂1α1 + ∂2α2, ∇× α = ∂1α2 − ∂2α1, and so on. In

this expression, we did not include contributions which come from massless fields and tree

level term 1
2 (u2 + v2). Perturvative integration of αi, βi and expanding log determinants

give the O(V 4) 1-loop effective potential. After a straightforward calculation we obtained

− V 1 loop(L, V ) =
1

gπ

∫

d3x

[

− V 4

4L5
+

g2V 4

2L3
t2
]

. (A.18)

To have this results, we evaluated momentum integrals as follows:
∫

d3x1d
3x2 . . . d3xn ∆(x1, x2)∆(x2, x3) . . . ∆(xn−1, xn)∆(xn, x1) =

∫

d3x I(n),

I(n) =
Γ(n − 3

2
)

Γ(n)8π
3

2 (m2)n− 3

2

, I(2) =
1

8πm
, I(3) =

1

32πm3
, I(4) =

1

64πm5
. (A.19)

∫

d3x1d
3x2 t2

1
∆(x1, x2)∆(x2, x1) =

∫

d3x t2 I(2). (A.20)

∫

d3x1d
3x2 t1∆(x1, x2)t2∆(x2, x1) =

∫

d3x t2 J(2), J(2) =
1

128π
1

2 Γ(3

2
)m

. (A.21)

∫

d3x1d
3x2d

3x3





∑

i=1,2

∂

∂xi
1

∂

∂xi
2

∆(x1, x2)



∆(x2, x3)∆(x3, x1) =

=

∫

d3x
2

3
[I(2) − m3I(3)]. (A.22)

∫

d3x1d
3x2d

3x3d
3x4





∑

i=1,2

∂

∂xi
1

∂

∂xi
2

∆(x1, x2)



∆(x2, x3)





∑

j=1,2

∂

∂xj
3

∂

∂xj
4

∆(x3, x4)



∆(x4, x1)

=

∫

d3x K(4), K(4) =
1

12πm
, (A.23)
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where

∆(x, y) =
−1

� − m2
=

∫

dp3

(2π)3
eip(x−y)

p2 + m2

is the free field propagator with constant m2.

Finally we discuss the higher order terms of f beyond O(V ). The 1-loop potential

calculated by (A.16) contains UV divergent contributions. The condition that these diver-

gences are cancelled with each other is

− δmX + 2δmg − 3δmA − 2H +
2

3
FF +

1

3
KK = 0. (A.24)

It gives an equation to determine f :

− 4V

L2
+ 2

ξ̇2

ξ2
+ 2

f̈

f
− 4

ḟ ξ̇

fξ
+

2

3

4V 2

L2ξ2
+

4

3

(

ḟ

f
− ξ̇

ξ

)2

= 0. (A.25)

We introduce a new function G = d
dt

log(f/ξ), then obtain a differential equation

Ġ = −5

3
G − d2

dt2
log ξ +

2V 2

L2

(

1 − 2

3

1

ξ2

)

. (A.26)

We can solve this equation order by order in V . Expand G as G =
∑∞

n=1 G(n)V n,

then (A.26) determines each G(n). G(1) = ±V
L

to give no (finite/infinite) correction to

O(V 2) terms of 1-loop potential. In this way f is determined as

f = exp

(

±V t

L
− V 2t2

2L2
± 20V 3t3

9L3
− 115V 4t4

18L4
+ · · ·

)

= 1 ± V t

L
+ O(V 3). (A.27)
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